3D Images

To gain access to the 3D Images for this title, please visit the Instructor Resources Download Hub  

New Users If you are a new user and need access to the Instructor resources then you will need to fill out a the registration form on the site which will be verified by one of our sales reps.

References for instructors

When preparing this book, I start from a survey of the literature. Below are references that I have used plus some (e.g. 3-D printing of batteries, undergraduate lab preparation of a superconductor) that I thought might interest you.
Elaine A. Moore

Chapter 1

Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J. (1984). Metallic Phase with Long-Range Orientational Order and No Translational Symmetry Physi. Rev.Lett.. 53 1951–1953

Chapter 3

P.L.Djurovich and R. J. Watts, (1993) A simple and reliable chemical preparation of YBa2Cu3O7-x superconductor. J. Chem. Ed., 70, 497 – 8.
Liu, R.S.; Chang, C. T.; Wu, P. T. (1989)  Homogeneous co-precipitation as a means towards High TC and sharp transition YBa2Cu3O7-x, Inorg. Chem. 28, 154.
C. D. E Lakeman and D. A. Payne, (1994) Sol-gel processing of electrical and magnetic ceramics, Mater. Chem. Phys, 38, 305 – 24.
H. Benhebal, M. Chaib, T. Salmon, J. Geens, A.  Leonard, S.D. Lambert, M. Crine, B. Heinrichs, (2013) Photocatalytic degradation of phenol and benzoic acid using zinc oxide powders prepared by the sol–gel process, Alexandria Engineering Journal, 52, 517–523.
S. Dhere (2018) Electrode materials for supercapacitors synthesised by sol-gel process, Current Science, 115, 436 – 449.
D. M. P Mingos and D,. R. Baghurst, (1991) Application of microwave dielectric heating effects to synthetic problems in chemistry, Chem. Soc. Rev. 20, 1 -47
I. Pompermayer Machado, V. Carvalho Teixeira, C. C. Santos Pedroso, H. Felinto Brito, L. C. Veloso Rorigues (2019) X-ray scintillator Gd2O2S:Tb3+ materials obtained by a rapid and cost-effective microwave-assisted solid-state synthesis, Journal of Alloys and compounds, 777, 638 – 645.
A. Rabenau, (1985) The role of hydrothermal synthesis in preparative chemistry, Ang. Chem. (Int edn) 24, 1026 – 40.
K-C. Hsu, J-D. Liao and Y-S. Fu (2013) Hydrothermal synthesis of ZnO nanorods using the HMT surfactant, Integrated Ferroelectrics, 143, 97 – 106.
M. S. Stark, K. L. Kuntz, S. J. Martens and S. C. Warren (2019) Intercalation of layered materials from bulk to 2D, Adv. Mater. 31, 1808213.

Chapter 6

C. Reyes, R. Somogyi, S. Niu, M. A. Cruz, F. Yang, M. J. Cattenaci, C. R. Rhodes ans B. J. Wiley, Three-dimensional printing of a complete lithium ion battery with fused filament fabrication, (2018) ACS Appl. Energy Mater. 1, 5268- 5279.
M Amores, T. E. Ashton, P. J. Baker, E. Cussens and S. Corr, (2016) J. Mater. Chem. A, 4, 1729 – 1736.

Chapter 7

T. Abdullahi, Z. Harun and M. H. D. Othman, (2017) A review on sustainable synthesis of zeolite from kaolinite resources via hydrothermal process, Advanced Powder Technology, 28, 1827 – 1840.
Q. Yu, Y. Ma, S. Wang, S. Meng, and F-S Xiao (2019) 110th Anniversary: Sustainable synthesis of zeolites: from fundamental research to industrial production, Ind. Eng. Chem. Res. 58, 11653 – 11658.
Q. Wu, X. Meng, X. Gao and F-S Xiao, (2018) Solvent-free synthesis of zeolites: mechanism and utility, Acc. Chem. Res., 51, 1396 – 1403.
B. S. Crandall, J. Zhang, V. Stavila, M. D. Allendorf and Z. Li (2019)  Desulfirasation of hydrocarbon fuels with microporous and mesoporous materials: metal organic frameworks, zeolites and mesoporous silicas, Ind. Eng. Chem. Res .58, 19322 – 19352.
J. A. Mason, M. Veenstra and J. R. Long (2014) Evaluating metal-organic frameworks for natural gas storage, Chem. Sci. 5, 32.
N. Stock and S. Biswas (2012) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies and composites, Chem. Rev. 112, 933 -969.
J. Wang and S. Zhuang, (2019) Covalent organic frameworks  (COFs) for environmental applications, Coordination Chemistry Reviews, 400, 213046.
T. Xiao and D. Liu (2019) Progress in the synthesis, properties and applications of ZIF-7 and its derivatives, Materials Today Energy,14, 100357.

Chapter 8

Seitz, F., (1946) Color centres in alkali halide crystals, Reviews of Modern Physics, 18, 384 –
408

Nakamura, Shuji (2015) Blue-light-emitting diodes (Nobel Lecture), Angewandte Chemie International edition 54, 7770.

Chapter 10

Maeno, Y., Rice, T.M. and Sigrist, M. (2001) The intriguing superconductivity of strontium ruthenate, Physics Today, January, 42–47.

Chang, S., (2016) Unmasking the record-setting sulfur hydride superconductor, Physics Today 69, 7, 21 (2016); https://doi.org/10.1063/PT.3.3220

http://www.hitachi.com/rev/1999/revoct99/r5_107.pdf  Superconducting devices by Hitachi up to 1999.
https://www.siemens-healthineers.com/en-uk/magnetic-resonance-imaging  MRI instruments manufactured by Siemens 2020.
Oestergard, J,(1997) Superconducting power cables in Denmark – a case study, IEEE Transactions on Applied Superconductivity, 7, 719 – 722. 
https://snf.ieeecsc.org/abstracts/stp474-lessons-learned-1998-2004-us-pirelli-detroit-edison-cable-demonstration

Chapter 11

Barrow, M., Taylor A. Murphy, P., Rosseinsky, M. J., and Adams, D. J., (2015) Design considerations for the synthesis of polymer coated iron oxide nanoparticles for stem cell labelling and tracking using MRI, Chemical Society Reviews, 44, 6733.
Cox, J. (2003) Chemistry in Britain, A Quantum Paintbox, September, 21–25.

H. I. Adawi, M. A. Newbold, J. M. Reed, M. E. Vance, I. L. Feitshans, L. R. Bickford and N. A. Lewinski (2018) Nano-enabled personal care products: Current developments in consumer safety, NanoImpact, 11, 170 – 179.